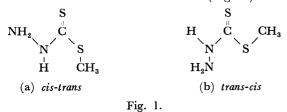
2628

Conformational Characterization of S-Methyl Dithiocarbazate by Infrared Spectra and Vibrational Assignments


Sadasivam Manogaran and Dixit Narayanarao Sathyanarayana*

Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India

(Received November 9, 1981)

Infrared spectra are recorded for S-methyl dithiocarbazate and its N-deuterated compound in two molecular conformations in the solid state and in solution between 4000 and 30 cm⁻¹. The assignments have been supported from a complete normal coordinate analysis; the conformation sensitive bands of the -CSNHNH₂ grouping are discussed. The assignments are compared with those of related molecules to check the internal consistency and to obtain the pattern of the characteristic bands of thiocarbazoyl (-CSNHNH₂) group. The magnitudes of the C-N and S-CH₃ torsional barriers are estimated from the force constants.

The structural and spectroscopic studies¹⁻⁶) of the methyl ester of dithiocarbazic acid and its *N*-substituted derivatives are currently of interest. The impetus for this and similar work arises from the wide ranging applications of these compounds in industry and medicine^{7,8}) and their varying ligational⁹) and conformational properties.^{1,10}) *S*-methyl dithiocarbazate (SMDTCZ) is itself a very interesting compound which has been isolated as solid in two planar molecular conformations^{1,2}) shown below (Fig. 1).

The infrared spectra of SMDTCZ have been reported;2,6) some assignments have been made empirically. In order to note more precisely the conformation-sensitive vibrations and discuss the vibrational spectra of SMDTCZ more fully, we have investigated the infrared spectra of SMDTCZ in two molecular conformations as well as their N-deuterated species. Based upon the force function previously developed,11,12) normal coordinate analyses have been accomplished. The results are compared with those of chemically and structurally related molecules11-15) for which detailed vibrational assignments have recently become available to provide a test for the general validity of the assignments derived and to obtain a pattern characteristic of the bands arising from thiocarbazoyl -C(=S)NHNH₂ grouping. The magnitude of the torsional barriers about the C-N and S-CH₃ bonds is estimated from the force constants.

Experimental

SMDTCZ having cis-trans and trans-cis conformation was prepared according to the literature methods. $^{16,17)}$ Recrystallization from aqueous solution of the trans-cis conformer yields the cis-trans conformer of SMDTCZ. The purity of the compounds was checked by microanalyses. The N-deuterated samples were obtained by repeated exchange reaction with D_2O .

The infrared spectra from 4000 to 200 cm⁻¹ were measured on a Perkin-Elmer 580 spectrophotometer in KBr pellets and nujol mulls which yielded identical spectra. The observed spectra are shown in Fig. 2. The solution spectra

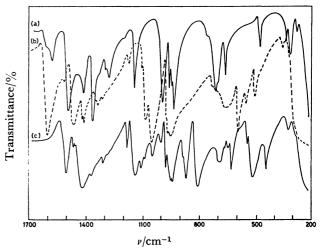


Fig. 2. Infrared spectra of SMDTCZ in (a) cis-trans, (b) trans-cis, and (c) of SMDTCZ-d₃ in cis-trans conformations.

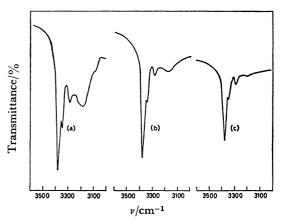


Fig. 3. Infrared spectra of S-methyl dithiocarbazate in CHCl₃ at concentrations of (a) 1.0×10^{-1} M, (b) 0.6×10^{-1} M, and 0.3×10^{-1} M ($1M=1 \text{ mol dm}^{-3}$).

were run on the same instrument using NaCl cells of path length of 0.4 mm (Figs. 3 and 4). The spectra between 400 and 30 cm⁻¹ were recorded on a Polytec FIR 30 Michelson interferometer as polyethylene disks. The instruments were calibrated with usual standards.

Normal Coordinate Analysis

The conformations adopted for the calculations are shown in Fig. 1. In the molecular symmetry C_s, the 30 normal modes of vibration of SMDTCZ span

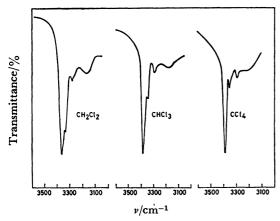


Fig. 4. Infrared spectra of S-methyl dithiocarbazate in different solvents.

19 of species a' (in-plane) and 11 of species a" (out-of-plane) vibrations. The internal and symmetry coordinates were selected in the usually accepted form. The bond length and valence angle values for SMDTCZ, were transferred from the X-ray crystal structure data.^{1,2)} The potential energy was expressed in terms of a Urey-Bradley force function employing valence force field type constants for the out-of-plane and torsional coordinates. The initial values of the force constants were transferred from thiosemicarbazide¹¹⁾ (hydrazinecarbothioamide) and S-methyl N-methyldithiocarbamate.¹²⁾ The refinement of the force constants was carried out as already described.^{11,12)} The computations were made on a DEC 1090 digital computer employing a program similar in form to that of Schachtschneider.¹⁸⁾

The final force constants of SMDTCZ listed in Table 1 are considered physically reasonable. Good fit reached between the observed and calculated frequencies for SMDTCZ and its deuterium labelled molecule also lends confidence to the values of the force constants and the assignments derived (Tables 2 and 3).

Results and Discussion

We noted that recrystallization of the trans-cis conformer of SMDTCZ from aqueous solution transformed it to the cis-trans form, while recrystallization from organic solvents including alcohols did not effect any conformational change, contrary to an earlier report.²⁾ Further, heating the trans-cis isomer to its melting and then cooling it also did not bring about any conformational change. The N-eleuterated product of both isomeric forms of SMDTCZ interestingly yielded identical infrared spectrum; it was found to correspond to that of the cis-trans conformer which is the stablest form.

The frequencies of the observed infrared bands of SMDTCZ are listed in Table 2, together with the calculated vibrational frequencies along with approximate descriptions of the modes in terms of the potential energy distributions (PED) amongst the symmetry coordinates including only terms having greater than 15 percent for simplicity. Similar data for the N-deuterated compound are presented in Table 3. Despite the general asymmetry of the molecule, most of the fundamental frequencies may be described as group vibrations. A perusal of Table 2 shows that most of the frequencies for the two conformers differ, to a lesser or a greater extent.

N-H Stretching. The characteristic N-H stretching frequencies are sensitive to structural and electronic variations. The existence of conformational isomers in solution is clearly manifested in the infrared spectra of SMDTCZ (Figs. 3 and 4) which possess

TABLE 1. FORCE CONSTANTS⁸⁾ OF SMDTCZ IN (a) cis-trans AND (b) trans-cis conformations

(1) Urey-	-Bradley type (a)	(b)		(a)	(b)		(a)	(b)
K(C=S)	3.80	4.05	H(NC=S)	0.46	0.40	F(NC=S)	1.15	1.15
K(C-S)	2.70	3.05	H(NC-S)	0.30	0.30	F(NC-S)	0.90	0.90
K(S-C)	2.10	1.90	H(SCS)	0.20	0.06	F(SCS)	0.40	0.45
K(CN)	6.15	5.45	H(CSC)	0.14	0.18	F(CSC)	0.15	0.15
K(NN)	3.60	4.20	H(CNN)	0.27	0.40	F(CNN)	0.35	0.35
K(N'H)	5.45	5.50	H(CNH)	0.27	0.27	F(CNH)	0.45	0.50
K(NH)	5.30	5.40	H(HNN)	0.12	0.08	F(HNN)	0.50	0.54
K(CH)	4.52	4.50	H(NNH)	0.09	0.06	F(NNH)	0.54	0.35
$k(CH_3)$	-0.08	-0.04	H(HNH)	0.60	0.64	F(HNH)	0.08	0.07
			H(SCH)	0.20	0.17	F(SCH)	0.40	0.40
			H(HCH)	0.40	0.36	F(HCH)	0.05	0.14
(2) Valen	ce type cons	stants						
• •	(a)	(b)			(a)	(b)		
$f(\pi CS)$	0.090	0.150	$f(\tau \mathrm{CN})$	(0.085	0.060		
$f(\pi NH)$	0.044	0.060	$f(\tau CS)$	(180	0.220		
f(tNH ₂)	0.550	0.570	$f(\tau \mathrm{CH_3})$	(0.008	0.007		
$f(\tau NH_2)$	0.030	0.024	$f(\pi CS, \tau N)$	$(\mathbf{H}_2) = 0$.012	0.014		

a) Units: K, H, F are in N cm⁻¹ (=mdyn Å⁻¹) and k, f in 10^{-16} N cm rad⁻² (=mdyn Å rad⁻²); meaning of t, π , τ as in Table 3.

Table 2. Observed and calculated fundamentals (cm^{-1}) and potential energy distribution(ped) for SMDTCZ in two conformations

	01.1		cis-trans			trans-cis
Species	Obsd	Calcd	Descriptional (PED/%)	Obsd	Calcd	Description ^{a)} (PED/%)
a'	3280	3282	$\nu NH(99)$	3305	3311	νNH(100)
	3155	3157	$vNH_2(99)$	3175	3162	$\nu \mathrm{NH_2}(100)$
	2960	2966	$v_{\rm a}{ m CH_3}(100)$	2975	2973	$v_{\rm a}{ m CH_3}(100)$
	2890	2886	$\nu_{\rm s}{ m CH_3}(100)$	2920	2947	$\nu_{\rm s} { m CH_3}(100)$
	1598	1597	$\delta \mathrm{NH_2(86)}$	1610	1608	$\delta \mathrm{NH_2}(92)$
	1507	1502	ν CN(54), δ NH(27)	1465	1467	$\delta NH(45)$, $\nu CN(31)$
	1420	1431	$\delta_{\mathtt{a}}\mathrm{CH_{3}(82)}$	1412	1412	$\delta_{\rm a}{ m CH_3(88)}$
	1373	1385	δ NH(47), ν CN(25), ν C=S(15)	1340	1344	νCN(54), δNH(25)
	1290	1288	$\delta_{ m s} { m CH_3}(96)$	1312	1309	$\delta_{\rm s}{ m CH_3(97)}$
	1155	1159	$\delta NCS(28), \ \nu NN(20), \ \nu C=S(16)$	1170	1183	δ NCS(24), ν C=S(21), ν C-S(18)
	1005	1003	$\nu NN(45), \ \nu C-S(30)$	1080	1080	$\nu NN(58), \ \nu C=S(30)$
	955)	950	rCH ₃ (73)	949	947	rCH ₃ (83)
	945∫					,
	780	789	$wNH_2(60)$	727	724	ν S-C(67), ν C-S(17)
	725	728	$\nu S-C(95)$	655	662	$wNH_2(30), \nu S-C(29), \nu C-S(23)$
	705	693	$\nu C = S(34), \text{ wNH}_2(29)$	582	585	$wNH_2(63), \nuC-S(18)$
	465	461	ν C-S(45), δ NCS(24)	496	499	δ NNC(25), δ NCS(24), ν C=S(24)
	315	314	$\delta SCS(62)$	350	347	$\delta SCS(50), \ \delta CSC(24)$
	230	230	δ NNC(60), δ NCS(16)	222	222	δ NNC(44), δ NCS(31), δ CSC(19
	149	150	$\delta \mathrm{CSC}(71)$	150	151	δ CSC(53), δ SCS(34)
a''	3180	3160	$\nu NH_2(100)$	3240	3246	$vNH_2(100)$
	2975	2966	$\nu CH_3(100)$	2975	2972	$\nu CH_3(100)$
	1430	1431	$\delta CH_3(82), rCH_3(18)$	1421	1412	$\delta \mathrm{CH_3(88)}$
	1120	1119	tNH(100)	1047	1042	tNH ₂ (99)
	970	949	$rCH_3(76), \ \delta CH_3(23)$	964	945	$rCH_3(84)$, $\delta CH_3(15)$
	665	666	$\tau CN(47), \ \tau NH_2(32), \ \pi NH(21)$	635	648	τCN(39), πNH(38), τNH ₂ (21)
	338	337	$\tau NH_2(60), \ \pi NH(20)$	290	297	$\pi C = S(53), \tau NH_2(38)$
	278	279	$\pi C = S(53), \ \tau CN(22), \ \tau C - S(16)$	260	270	$\tau NH_2(41), \ \pi C=S(25), \ \tau CN(19)$
	148	150	$\tau C-S(62), \pi NH(17)$	205	204	$\tau C-S(73)$, $\tau CN(18)$
	135	133	$\tau CH_3(42), \ \pi C=S(18), \ \tau C-S(16)$	115	115	$\tau CH_3(88)$
	110	112	$\tau CH_3(45), \ \pi C=S(22), \ \pi NH(21)$	115	111	πNH(39), τCN(25), τC-S(18)

a) Meaning of v, δ , r, t, w, π , τ as in Table 3.

two distinguishable bands in the N-H frequency region. The first band observed in the 3365—3390 cm⁻¹ range is attributable to a trans -CS-NH- grouping and the second appearing in the 3340—3350 cm⁻¹ interval to a cis -CS-NH- conformation. If we assume the extinction coefficients of the cis and trans forms to be nearly equal as is usually done, it is seen that the cis-trans conformer (a) with trans -NH-CS- grouping predominates in solution. Further, the relative intensities of the doublet peaks were found to be concentration independent (Fig. 3) ruling out the doublets being ascribed to molecular association. The infrared spectra of SMDTCZ in a series of solvents were obtained to note the influence of solvent dielectric on the spectra. The experimental data are presented in Fig. 4. It is observed that changing the solvent causes considerable alterations in the relative intensities of the two bands, which supports the presence of a conformational equilibrium. Increasing the solvent polarity favours transition to a trans-cis form (with cis -CS-NH- grouping). The spectra (Figs. 3 and 4) further exhibit a weak band around 3285 cm⁻¹ and

another weak but broad absorption centred around 3180 cm⁻¹. The former band has the characteristics of the intermolecularly hydrogen-bonded N-H stretching band; the region being same as in the solid. The latter absorption arise from the -NH₂ stretching motions.

According to the literature data, and as already pointed out, in the infrared spectra, of the two N-H stretching bands, a high frequency band is assigned to the trans(-NH-CS-) form and a low frequency band for the cis conformation. Interestingly, a reverse situation—the trans NH stretching band occurring at a lower frequency than the cis NH stretching modeis realised for SMDTCZ in the solid phase. It may be ascribed essentially to intermolecular hydrogen bonding. Both rotamers exist as intermolecularly hydrogen bonded dimers. In the cis-trans isomer, N-H...N hydrogen bonds exist while in the trans-cis conformation N-H···S hydrogen bonds are present.^{1,2)} Since the former hydrogen bonds are stronger than the latter ones, the greater downward shift of the -NH stretching frequency may be expected pro-

Table 3. Observed and calculated fundamentals (cm $^{-1}$) and potential energy distribution (PED) for SMDTCZ- d_3

Species	Obsd	Calcd	Descriptiona)(PED/%)	Species	Obsd	Calcd	Descriptiona) (PED/%)
a'	2950	2966	$v_{\rm a}{ m CH_3}(100)$		210	216	δNNC(59)
	2890	2886	$v_{\rm s}{ m CH_3}(100)$		140	147	δ CSC(67), δ NCS(16)
	2420	2400	$\nu { m ND}(98)$	a''	2950	2966	$\nu { m CH_3}(100)$
	2270	2284	$\nu \mathrm{ND_2}(98)$		2350	2335	$\nu \mathrm{ND_2}(100)$
	1490	1477	ν CN(72)		1420	1431	$\delta CH_3(82)$
	1420	1431	$\delta_{\rm a}{ m CH_3(82)}$		955	949	$rCH_3(76)$, $\delta CH_3(23)$
	1286	1288	$\delta_{\rm s}{ m CH_3}(96)$		815	836	$tND_2(98)$
	1240	1247	δ NCS(26), ν C=S(25), ν NN(15)		520	484	$ \tau CN(46), \ \tau ND_2(29), \\ \pi ND(24) $
	1180	1175	$\delta ND_2(76)$		310	295	$\pi CS(40), \tau ND_2(25),$
	982	992	ν C-S(32), ν NN(28)				$\pi ND(16)$
	955	948	$rCH_3(69), \ \delta_aCH_3(21)$		232	226	$\tau ND_2(47), \ \tau CN(28),$
	945	936	$\delta ND(63)$, $\nu NN(23)$			140	$\pi CS(17)$
	712	728	ν S-C(94)			149	$\tau C-S(65), \ \pi ND(15)$
	700	719	$\nu C=S(49)$		133	130	τCH ₃ (57)
	625	588	$wND_2(65)$		105	108	$\tau CH_3(30), \ \pi ND(27),$
	446	439	$\nu C-S(38)$, $\delta NCS(27)$				$\pi \mathrm{CS}(25)$
	305	311	$\delta SCS(62)$				

a) ν : Stretching, δ : deformation, τ : rocking, τ : twisting, τ : out of plane bending, τ : torsion, a: asymmetric, s: symmetric.

Table 4. Comparison of the assignments of SMDTCZ with those of its related molecules

TEC	MMTU	TCH ^{a)}	DMTU	MMDTC	SMDTCZ		3.6
TSC					cis-trans	trans-cis	Main assignments
3260 3180	3350 3139	3200			3180 3155	3240 3175	NH ₂ stretching
3180	3230	3170	3305	3260	3280	3305	NH stretching
800	778	768	725	468	705	490	C=S stretching
1643		1620			1598	1610	NH ₂ bend
1480	1302	1333	1355 12 87	1349	1373	1465	NH bend + C-N stretching
1530	1500	1530 1488	1560 1506	1519	1507	1340	C-N stretching + NH bence
1160	1125	1140° 1078°	_	_	1005	1080	NN/CN stretching
995	_	1010¢ 932¢	_	_	1120	1047	NH ₂ twist
725	_	680° 754 [‡]	_		780	655	NH ₂ wag
				721	725	727	S-CH ₃ stretching
570	_	579	662 642	556	665	635	N-H out-of-plane bend
408	496	468	445	356	465	496	C=S bend
353		307	44 5	440	278	290	C=S out-of-plane bend
				174	149	150	CSC bend
206	_	253 194	_		230	228	NNC/CNC bend
				2930 2885	2960 2890	2975 2920	CH ₃ stretching
				1409	1420	1412	CH ₃ asymmetric bend
				1309	1290	1312	CH ₃ symmetric bend
				946	955 945	949	CH ₃ rock
				946	970	964	CH ₃ wag
				106	110	115	CH ₃ torsion

Abbrs. and (Refs.): TSC; thiosemicarbazide (11), NMTU; N-methylthiourea (15), TCH; thiocarbonohydrazide (13), DMTU; N,N'-dimethylthiourea (14), MMDTC; N-methyl S-methyldithiocarbamate (12), SMDTCZ; S-methyl dithiocarbazate (present work).

a) c and t refer to cis and trans groups to C=S bond.

ducing cis-NH band at a frequency higher than the trans-NH band.

Comparison. The assignments for SMDTCZ are compared with those available for related compounds11-15) in Table 4. It is satisfactory that most of the assignments for SMDTCZ are compatible with the general features of the spectra of thiosemicarbazide and thiocarbonohydrazide and the pertinent portions from their isoelectronic thioureas and from S-methyl N-methyldithiocarbamate. Some of the differences in the characteristic frequencies could be explained on the basis of the different nature of the coupling with other vibrations. On the whole, there is internal consistency in the assignments and some pattern characteristic of -CSHN- grouping as well as those of the -HNNH₂ vibrations could be recognized. A brief discussion of the spectra of SMDTCZ will now be given.

-CSNHNH₂ Group Vibrations. An important band in the spectra of hydrazo derivatives is the N-N stretching band. The stretching frequency of N-N bond cis to C=S group is found 80 cm⁻¹ lower than that for the trans N-N group. This is compatible with a similar assignment for trans and cis N-N bond stretching in thiosemicarbazide^{11,21)} but a reverse situation is found in thiocarbonohydrazide.¹³⁾ This may partly be explained on the basis of the mixing of the other vibrations.

The other bands of interest are those arising from the thioureide vibrations. The thioamide II and III bands arise from coupled modes of in-plane NH bending and C-N stretching; the former band is predomimantly due to NH bending while the latter one arises chiefly from C-N stretching. These bands are conformation-sensitive. For SMDTCZ, the *trans* -CSNH-group has CN stretching band at a higher frequency than N-H in-plane bending. Similar findings have been made in other related systems.

The thioamide I band corresponding to C=S stretching is sensitive to the molecular environment and conformation. SMDTCZ provides a dramatic example of this; both rotamers have however no bands which could be attributed unequivocally to the C=S stretching mode.

The wagging and twisting modes of the -NNH₂ group appear to be conformation-sensitive. The vibrations of the -NH₂ group cis to the C=S moiety occur at higher wave numbers compared to -NH₂ group bands trans to the C=S grouping. A similar trend is noticeable for NH₂ torsional mode but is complicated by the more extensive mixing with other vibrations.

Torsional Barriers. From the value of the torsional force constants we may roughly estimate the potential barriers for C-N and S-C bonds. Following the procedures of Uno et al., ^{22,23}) we obtained 6.4 and 5.6 kJ mol⁻¹ (1.53 and 1.34 kcal mol⁻¹) as barriers to internal rotation for S-CH₃ bond for the cis-trans and trans-cis conformers respectively. The values obtained are similar to that of acetamide²²) and N-meth-

ylurea²³⁾ (5.4—7.1 kJ mol⁻¹). The C-N barrier is calculated to be 100.7 and 70.6 kJ mol⁻¹ (24.06 and 16.87 kcal mol⁻¹) respectively for the *cis-trans* and *trans-cis* isomers, assuming an energy difference of 6.7 kJ mol⁻¹ (1.6 kcal mol⁻¹) between the *cis* and *trans* NH₂ forms.¹⁰) The estimates of the barrier heights over the amide C-N bond from torsional force constants in related thioamides and thioureas are similar and are usually higher than those determined by NMR methods.²⁴)

References

- 1) A. M. Manotti-Lanfredi, A. Tiripicchio, M. Tiripicchio Camellini, A. Monaci, and F. Tarli, J. Chem. Soc., Dalton Trans., 1977, 417.
- 2) R. Mattes and H. Weber, J. Chem. Soc., Dalton Trans., 1980, 423.
- 3) D. Gattegno and A. M. Giuliani, Tetrahedron, 30, 701 (1974).
- 4) A. A. Bonapasta, C. Battistoni, and A. Lapiccirella, J. Mol. Struct., 63, 93 (1980).
- 5) C. Battistoni, M. Bossa, C. Furlani, and G. Mattogno, J. Electron Spectrosc., 2, 355 (1973).
- 6) D. F. Michalska and B. Kedzia, Bull. Pol. des. Sci., 24, 393 (1976).
- 7) S. Kubota, M. Uda, Y. Mori, F. Kametani, and H. Terada, I. Med. Chem. 21, 591 (1978)
- H. Terada, J. Med. Chem., 21, 591 (1978).
 8) V. V. Doulatyan and F. V. Avetysian, Arm. Khim. Zh., 26, 240 (1973).
- 9) M. A. Ali and S. G. Teoh, J. Inorg. Nucl. Chem., 40, 451 (1978); and references therein.
- 10) M. V. Andreocci, M. Bossa, G. Ramunni, M. Scazzocchio, D. Gattegno, and A. M. Giuliani, J. Chem. Soc., Dalton Trans., 1974, 41.
- 11) D. N. Sathyanarayana, K. Volka, and K. Geetharani, Spectrochim. Acta, Part A, 33, 517 (1977).
- 12) K. R. Gayathri Devi, D. N. Sathyanarayana, and S. Manogaran, Spectrochim. Acta, Part A, 37, 633 (1981).
- 13) K. Dwarakanath, D. N. Sathyanarayana, and K. Volka, Bull. Soc. Chim. Belg., 87, 667 (1978).
- 14) K. R. Gayathri Devi and D. N. Sathyanarayana, Bull. Chem. Soc. Jpn., 53, 2990 (1980).
- 15) K. Dwarakanath and D. N. Sathyanarayana, Bull. Chem. Soc. Jpn., 52, 2084 (1979).
- 16) G. Bahr and G. Schleitzer, Z. Anorg. Chem., 280, 161 (1955).
- 17) L. F. Audrieth, E. S. Scott, and P. S. Kippur, J. Org. Chem., 19, 733 (1954).
- 18) J. H. Schachtschneider, Technical Report, Shell Development Company, Emeryville, California, U.S.A. (1964).
- 19) W. Walter and H. P. Kubersky, J. Mol. Struct., 11, 207 (1972).
- 20) B. Galabov, G. Vassilev, N. Neykova, and A. Galabov, J. Mol. Struct., 44, 15 (1978).
- 21) K. Geetharani and D. N. Sathyanarayana, Aust. J. Chem., 30, 1617 (1977).
- 22) T. Uno, K. Machida, and Y. Saito, Spectrochim. Acta, Part A, 27, 833 (1971).
- 23) Y. Saito, K. Machida, and T. Uno, Spectrochim. Acta, Part A, 31, 1237 (1975).
- 24) W. E. Stewart and T. H. Siddall, III, Chem. Rev., 70, 517 (1970).